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Abstract
A new method for photo-induced electromotive force theoretical study of
bipolar semiconductors accounting for the distortion of energy bands near the
semiconductor surface is presented. This method is based on the exact solution
of the continuity equations and the Poisson equation and on the boundary
conditions derived for the real metal–semiconductor junction. It is shown that
photo-induced electromotive force essentially depends on the surface potential
for certain surface parameters.

1. Introduction

Conventional theories [1, 2] of the photo-induced (PI) electromotive force (emf) assume local
electroneutrality in the bulk of a semiconductor (the so-called quasi-neutrality approximation).
The bulk charge influence on the Dember effect was considered in [3]. It has been shown
in [3] that a positive non-equilibrium space charge layer (SCL) arises near the illuminated
sample surface and thus decreases the Dember emf value. The results of [3] are obtained under
simplified assumptions: the illuminated sample surface is in contact with a dielectric (gas or
vacuum), semiconductor energy bands are flat and the surface recombination rate is negligible.
However, the PI emf is measured across the metallic contacts placed on illuminated and dark
semiconductor surfaces. Firstly, this results in modification of boundary conditions in the real
metal–semiconductor junction because of the PI electron’s ability to move from semiconductor
into metal and the PI hole’s ability to accumulate near the illuminated surface [4, 5]. Therefore
the charge value in the SCL increases as compared with that of [3]. Secondly, a distortion of
semiconductor energy bands [6] creates the equilibrium SCL [7] and the built-in electric field,
which also affects the PI carrier density. The charge density in the SCL can increase even
more when the built-in electric field is directed from the bulk into the surface of a sample. In
this case the voltage difference across the SCL can exceed the Dember emf value. Lastly, in
this approach the boundary conditions must be formulated in the SCL because the real metal–
semiconductor junction thickness is significantly less than the Debye length [6]. Therefore, the
surface recombination parameters in our case do not coincide with the same parameters in the
quasi-neutrality approximation [7]. It is clear from the above-mentioned factors that calculation
of the PI emf requires the exact solution of the continuity equations and the Poisson equation.

This paper is aimed at the development of the PI emf theory in bipolar semiconductors.
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2. Theory

Let us consider a bipolar semiconductor plate 0 � x � L with the surface at x = 0 illuminated
by strongly absorbed light. The thickness of the sample L essentially exceeds the diffusion
length (see below). A semitransparent metallic contact is placed on the surface x = 0 of the
sample and the grounded metallic contact is placed on the surface x = L. We suppose that the
light wavelength corresponds to the region of fundamental absorption and that photo-excitation
is weak.

The non-equilibrium densities of electrons δn and holes δp, as well as the non-equilibrium
electric potential δϕ, are obtained from solution of the continuity equations [3, 8] and the
Poisson equation

1

e

d jn
dx

− δn

τn
− δp

τp
= 0, (1)
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e

d jp

dx
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∂2δϕ

∂x2
= e

εε0
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where −e is the electron charge, jn, jp are the electron and hole current densities, τn (τp) is the
parameter characterizing the electron (hole) bulk recombination rate [8], ε is the semiconductor
electrical permittivity, ε0 is the vacuum permittivity.

The expressions for partial currents in the linear approximation with small parameters
δn/n0 � 1, δp/p0 � 1, e|δϕ|/kT � 1 take the form [4, 6]

jn = −σn
dδϕ̃n

dx
,

jp = −σp
dδϕ̃p

dx
,

(4)

where σn = eμnneq is the electron conductivity, σp = eμp peq is the hole conductivity,
δϕ̃n = δϕ−δFn/e is the non-equilibrium electron electrochemical potential, δϕ̃p = δϕ+δFp/e
is the non-equilibrium hole electrochemical potential, δFn = kT δn/neq is the non-equilibrium
electron chemical potential, δFp = kT δp/peq is the non-equilibrium hole chemical potential,
μn (μp) is the electron (hole) mobility, k is the Boltzmann constant, T is the temperature of
the semiconductor and neq(x), peq(x) are the equilibrium densities of electrons and holes. The
equilibrium values neq(x), peq(x) for special cases are obtained in [6].

Let us formulate the boundary conditions (BCs) in the real metal–semiconductor junction
(MSJ), which lies at the surface x = 0 (a detailed BC derivation is presented in [4]).

Henceforth we should take into account that the MSJ thickness is significantly less than
the Debye length [6]. We suppose also that the Debye length significantly exceeds the electron
mean free path.

Let us integrate the Poisson equation (3) with x from −ξ to α and with α from −ξ to ξ

and take the limit ξ → 0. Taking into account the absence of an electric field in the metal and
the finite value of the non-equilibrium charge density near the surface x = 0 one obtains

δϕ(+0) = δϕM, (5)

where δϕM is the variation of the electric potential of the metallic contact.
Let us integrate equation (1) with x from α to ξ and with α from −ξ to ξ and take the limit

ξ → 0. Taking into account the electron–hole pair (EHP) surface generation rate G and the
absence of surface recombination and generation in metal, one obtains

jn(+0) = σnS[δϕ̃n(−0) − δϕ̃n(+0)] + e(vnδn(+0) + vδp(+0) − G), (6)
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where σ−1
nS = limξ→0

∫ ξ

−ξ
σ−1

n dx , σnS is the electron surface conductivity, vn =
limξ→0

∫ ξ

0 τ−1
n dx , v = limξ→0

∫ ξ

0 τ−1
p dx . By analogy we derive from equation (2)

jp(+0) = σpS[δϕ̃p(−0) − δϕ̃p(+0)] − e(vnδn(+0) + vδp(+0) − G), (7)

where σ−1
pS = limξ→0

∫ ξ

−ξ
σ−1

p dx , σpS is the hole surface conductivity.
Integrating equations (1), (2) with x from −ξ to α and with α from −ξ to ξ and taking the

limit ξ → 0, one obtains for the left of x = 0:

jn(−0) = σnS[δϕ̃n(−0) − δϕ̃n(+0)], (8)

jp(−0) = σpS [δϕ̃p(−0) − δϕ̃p(+0)]. (9)

From condition jp(−0) = 0 (there are no holes in the metal) and equation (9) we derive that
σpS = 0. It follows from equation (8), condition jn(−0) = 0 (the external electric circuit is
open) and condition σnS �= 0 (electrons can move from semiconductor into metal) that

δϕ̃M = δϕ(+0) − 1

e
δFn(+0). (10)

Taking into account the constancy of the metal chemical potential we derive from
equations (5) and (10) that

δFn(+0) = 0. (11)

It follows from equations (5)–(7) and (11) that the BCs for values δn, δp, δϕ take the form

1

e
jn(+0) = vδp(+0) − G, (12)

1

e
jp(+0) = −vδp(+0) + G, (13)

δn(+0) = 0, (14)

δϕM = δϕ(+0), (15)

where v is the surface recombination rate (SRR). On account of the relation jn + jp = 0
only one of the BCs (12), (13) is sufficient for calculations. Thus the BCs are presented by
equations (13)–(15).

The BCs (13), (14) can be explained as follows: the non-equilibrium electrons can cross
the MSJ (because σnS �= 0) and therefore do not accumulate on the surface x = 0. In the
model considered the MSJ thickness is significantly less than the Debye length. Therefore,
the parameter v characterizes the SRR in the real MSJ. Note that in the quasi-neutrality
approximation the BCs have been formulated at a virtual surface, which is disposed at a distance
of several Debye lengths from the real MSJ.

It should be stressed that δn �= δp because of the non-equilibrium SCL arising at a
several Debye length distance near the surface x = 0 [3]. Therefore, the quasi-neutrality
approximation is insufficient and the exact solution of the continuity equations and the Poisson
equation must be obtained. We shall derive this solution below.

In most semiconductors the diffusion length significantly exceeds the Debye length. Under
this condition the solution of equations (1)–(4) could be obtained as a sum of two modes: the
diffusion–recombination (DR) mode and the screening (S) mode [3, 5]. These modes are
denoted by subscripts R and S accordingly;

δn = δnR + δnS, δp = δpR + δpS, δϕ = δϕR + δϕS. (16)

The characteristic S mode decay length is the Debye length rD and the characteristic DR
mode decay length is the diffusion length λ. On account of the inequality rD � λ we can
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neglect the bulk recombination deriving S mode. Therefore the continuity equations (1) and (2)
for the S mode (as in the case of flat energy bands [3]) take the form

d jnS

dx
= 0,

d jpS

dx
= 0. (17)

The solution of equation (17) is

jnS = const = 0, jpS = const = 0 (18)

because the S mode is not equal to zero in a layer of several rD distance from the surface x = 0.
From equations (18) and (4) we obtain

δnS = eneq

kT
δϕS, δpS = −epeq

kT
δϕS. (19)

It follows from equation (19) that δpS = −δnS peq/neq, i.e. the electron and hole densities of the
S mode do not coincide (which is as it should be). Substituting equation (19) into equation (3)
one gets for the S mode

d2δϕS

dx2
= e2

εε0kT
(neq + peq)δϕS. (20)

The DR mode is obtained from the solution of equations (1)–(4) taking into account that
λ is the characteristic DR mode decay length and the inequality λ � rD is valid. Therefore,
deducing the DR mode we can assume that neq = n0, peq = p0 and ϕeq = 0.

With the use of the relations [6] neq(0) = n0 exp(
eϕS

kT ), peq(0) = p0 exp(− eϕS

kT ), jp =
−eD dδpR

dx we derive from equations (1)–(4) and BCs (13), (14) the DR mode value:

δnR = Gλ

DFv

exp
(
− x

λ

)
,

δpR = Gλ

DFv

(1 − γ ) exp
(
− x

λ

)
,

(21)

δϕR = Gλ

DFv

kT

e

(μn − μp)

(n0μn + p0μp)
exp

(
− x

λ

)
. (22)

Here λ = √
Dτ is the diffusion length, D = kT

e
(n0+p0)μnμp

(n0μn+p0μp)
is the bipolar diffusion

coefficient, τ = τnτp

τn+τp
is the lifetime of the EHP in the bulk of the sample, Fv = [1+Seff], Seff =

vτ
λ

[1+ p0

n0
exp(− 2eϕS

kT )] is the normalized effective SRR, ϕS is the surface potential (SP), n0 (p0)

is the electron (hole) equilibrium density in the bulk of the sample and γ = (μn−μp)

(n0μn+p0μp)

εε0kT
λ2e2 .

The quasi-neutrality condition is fulfilled for the DR mode because γ ∼ r 2
D/λ2 � 1. Note that

the normalized effective SRR value essentially depends on the SP provided that ϕS < −kT/e.
The solution for the S mode at small SP (|ϕS| � kT/e) has the form

δnS = − Gλ

DFv

[

1 − β + β exp

(

− x

rD

)]

exp

(

− x

rD

)

,

δpS = Gλ
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[

1 − β +
(

β − 2eϕS

kT

)

exp

(

− x
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)]

exp

(

− x

rD

)

,

(23)

δϕS = − Gλ

Dn0

kT

eFv

[

1 − β +
(

β − eϕS

kT

)

exp

(

− x

rD

)]

exp

(

− x

rD

)

, (24)

where rD =
√

εε0kT
e2(n0+p0)

is the Debye length and β = (4n0+2 p0)

3(n0+p0)

eϕS

kT .
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Figure 1. The non-equilibrium carrier density distribution in Ge for some SP values: 1—
ϕS = −5.4 mV, 2—ϕS = 5.4 mV. The dashed lines give δn(x) and δp(x) values for flat energy
bands. The dot-and-dash line represents the δnR(x) distribution.

It follows from equations (21)–(24) that the S mode depends on the SP and the DR mode
does not (which is as it should be).

Let us calculate the PI emf for any SP value. The measured PI emf ϕP is equal to the
variation of the electric potential of the illuminated metallic contact (the dark metallic contact
is grounded). It follows from equations (15) and (16) that

ϕP = δϕM = δϕR(0) + δϕS(0). (25)

We derive from equations (14), (19), and (21)

δϕS(0) = kT

eneq(0)
δnS(0) = − kT

eneq(0)
δnR(0) = − Gλ

DFv

kT

en0
exp

(

−eϕS

kT

)

. (26)

Finally, we obtain from equations (22), (25), and (26)

ϕP = ϕD0

Fv

− Gλ

Dn0

kT

eFv

exp

(

−eϕS

kT

)

, (27)

where ϕD0 = Gλ
D

kT
e

(μn−μp)

(n0μn+p0μp)
is the classical Dember voltage [6] at negligible SRR value.

3. Discussion of results

It follows from equation (27) that in the case of flat energy bands the PI emf is equal to

ϕP = − Gλ

Dn0

kT

e

μp(n0 + p0)

(n0μn + p0μp)
. (28)

The non-equilibrium carrier density distribution in pure Ge (T = 312 K, λ = 0.1 cm, μn =
3800 cm2 V−1 s−1, μp = 1800 cm2 V−1 s−1, rD = 3.5 × 10−5 cm, G = 1.3 × 1016 cm−2 s−1)
near the surface x = 0 is shown in figure 1. It follows from figure 1 and equation (23) that the
part of the PI electrons (−δnS) is moved from the semiconductor into the metal. This PI electron
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Figure 2. Photo-induced electric potential δϕ distribution in Ge for some SP values: 1—ϕS =
−5.4 mV, 2—ϕS = 5.4 mV. Line 3 gives the δϕ distribution from [3]. The dashed line gives the
δϕ(x) value for flat energy bands.
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Figure 3. The PI emf dependence on SP ϕS for some SRR values: 1—v = 20 cm s−1,
2—v = 40 cm s−1, 3—v = 60 cm s−1 (ϕD0 = 0.66 mV).

transport results in non-equilibrium potential δϕS formation and causes the accumulation of
photo-induced holes in the SCL near the surface x = 0 (see equations (19), (23) and figure 1).
So the PI emf value decreases as compared with that of [3] and becomes negative.

The built-in electric field Eeq = −dϕeq/dx occurs in the semiconductor when the SP
is not equal to zero. It is obvious that the electric field Eeq has an influence on the non-
equilibrium carrier density and thus changes the potential δϕ(x) distribution. The distribution
of the PI electric potential in pure Ge (T = 312 K, λ = 0.1 cm, μn = 3800 cm2 V−1 s−1,
μp = 1800 cm2 V−1 s−1, rD = 3.5 × 10−5 cm, G = 1.3 × 1016 cm−2 s−1) for the SRR
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v = 20 cm s−1 is shown in figure 2. It is seen from figures 1 and 2 that the field Eeq > 0
(ϕS > 0) decreases the S mode charge density which results in the PI emf value increase (see
curves 2). The negative field Eeq < 0 (ϕS < 0) increases the S mode charge density which
results in the PI emf value decrease (see curve 1).

The PI emf dependence on the SP in pure Ge (G = 4.5 × 1015 cm−2 s−1 and the other
parameters are the same as in figure 2) for some SRR values is shown in figure 3. As is
seen from figures 1–3 and equation (27), on decreasing the SP value (ϕS < 0) the S mode
charge density increases. Thus the PI emf value decreases until the normalized effective SRR
Seff becomes comparable with unity. The PI emf has a minimum ϕP. min at the SP value
ϕS

m ≈ (kT/2e) ln(vτp0/λn0). The PI emf minimum strongly depends on the SRR value.
Further decrease of the SP (ϕS < ϕS

m) results in Seff exponential growth and causes the PI
emf value increase. The PI emf tends to the classical Dember voltage (ϕD0 = 0.66 mV) when
ϕS � kT/e.

Note that the PI emf dependence on the SP can occur in extrinsic semiconductors at strong
photo-excitation.

4. Conclusions

The theory of the photo-induced emf accounting for the boundary conditions in a real metal–
semiconductor junction as well as the distortion of energy bands near the semiconductor surface
has been developed. It is shown that the photo-induced emf essentially depends on the surface
potential at a small surface recombination rate. This photo-induced emf calculation method
may be used for theoretical study of any kind of emf in bipolar semiconductors [5].
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